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Fig. 1. Given a point cloud without normals (a) that sparsely samples a thin Helmet (from [Laric 2012], 100K samples), the state-of-the-art normal estimation
method [Lin et al. 2024] results in a “holy” helmet (b), while the latest learning-based reconstruction method [Erler et al. 2024] smears the facial features (c).
Our method (NN-VIPSS) closely approximates the ground truth (e). Close-up views show a cross-section of the surface.

Surface reconstruction from points is a fundamental problem in computer

graphics. While numerous methods have been proposed, it remains chal-

lenging to reconstruct from sparse and non-uniform point distributions,

particularly when normals are absent. We present a robust and scalable

method for reconstructing an implicit surface from points without normals.

By exploring the locality of natural neighborhoods, we propose local re-

formulations of a previous global method, known for its ability to surface

sparse points but high computational cost, thereby significantly improving

its scalability while retaining its robustness. Experiments show that our

method achieves comparable speed to existing reconstruction methods on

large inputs while producing fewer artifacts in under-sampled regions.
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1 Introduction
Reconstructing 3D surfaces from scattered points is a fundamental

problem in computer graphics and has been extensively studied

in the last few decades [Berger et al. 2017]. A common approach

is to formulate the reconstruction problem as finding an implicit
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function whose zero level set represents the surface. The implicit

approach enjoys several benefits, such as flexibility in dealing with

arbitrary surface topology, ensuring a smooth and manifold out-

put, and convenience for volumetric operations such as offsets and

booleans.

Traditional implicit reconstruction methods, such as the popular

Screened Poisson Reconstruction (SPR) [Kazhdan and Hoppe 2013],

require normal vectors in addition to point locations. However, such

information may not always be available or accurate, in which case

it is necessary to estimate normals prior to reconstruction. While

many methods exist for normal estimation, the problem remains

challenging when the density of points is too low relative to the size

of shape features (e.g., Figure 1 (a)). Incorrect normals, in turn, lead

to surface artifacts (e.g., Figure 1 (b)). While data-driven methods

for implicit reconstruction have shown great promise, they struggle

with capturing fine features from sparse samples (e.g., Figure 1 (c)).

We review these methods in more details in Section 2.

We present a new implicit reconstruction method that does not

require normals and can more robustly deal with sparse and non-

uniform point distributions. Our method builds on the Variational
Implicit Point Set Surface (VIPSS) method of Huang et al. [2019],

which produces a smooth signed-distance-like function via global

optimization. Specifically, it solves for the Hermite data (a scalar

and an unit vector) at each input point such that a smooth function

interpolating the data at all points (theDuchon’s interpolant [Duchon
1977]) minimizes a second-order distortion measure (the Duchon’s
energy [Duchon 1977]). Thanks to the global nature of both the

interpolant and energy, VIPSS excels at surfacing very sparse points.

Unfortunately, the method has a high complexity (cubic in the input

size) and is impractical for inputs beyond a few thousand points.

In this paper, we propose a variant of VIPSS that can scale to

hundreds of thousands of points. Our idea is to reformulate both the
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interpolant and energy so that they can be locally computed. Specif-

ically, we approximate the global Duchon’s interpolant by blending

local interpolants, each defined over the natural neighbors of a point
– edge neighbors in the Delaunay Triangulation. By adopting Natu-
ral Neighbor Coordinates (NNC) [Sibson 1980] as blending weights,

we show that our blended interpolant, called Natural-Neighbor-
Duchon (NND) interpolant, retains the key strengths of Duchon’s

interpolant, including interpolation, smoothness, and robustness

against sparse and non-uniform point distributions. The blended

form gives rise to a localized energy definition in lieu of Duchon’s

energy, which in turn leads to a new variational problem that can

be locally constructed and solved.

Our method, called Natural-Neighbor-VIPSS (NN-VIPSS), retains
several features of VIPSS. It involves a single parameter that needs

to be tuned (𝜆), which balances fitting accuracy with surface smooth-

ness. In particular, the implicit surface exactly interpolates all points

at 𝜆 = 0. Except for the surfacing step, our method does not in-

volve any spatial discretization (such as octrees). Furthermore, our

method reproduces linear geometry and commutes with similarity

transformations. Our experiments showed that NN-VIPSS performs

as robustly as VIPSS on small-sized, sparse or non-uniform point

sets, but with significantly improved speed and scalable to much

larger inputs (we tested up to one million points). Compared to

existing reconstruction methods, NN-VIPSS achieves comparable

speed but shows greater robustness in under-sampled regions (e.g.,

Figure 1 (d)).

The rest of the paper is organized as follows. After reviewing re-

lated works on surface reconstruction (Section 2), we recall concepts

and methods that our method builds on (Section 3). The technical

discussion starts with a motivation and overview of our method

(Section 4), followed by details on our proposed interpolant (Section

5) and variational method (Section 6), and ends with a discussion

on asymptotic complexity (Section 7). Finally, we present the exper-

imental results (Section 8) and discuss limitations (Section 9).

2 Related Works

2.1 Scattered data interpolation
Closely related to surface reconstruction, scattered data interpo-

lation is the problem of constructing a function (interpolant) that

interpolates given data (values, derivatives, etc.) at scattered points

in space. There is a rich literature on the subject; see for example

[Anjyo et al. 2014; Wendland 2004]. We briefly review two tech-

niques that are most related to our work.

2.1.1 Natural Neighbor Interpolation. One way to interpolate scat-

tered data is by taking weighted sum of data associated with input

points near the query location. A popular choice of such weights

it the Natural Neighbor Coordinates (NNC) introduced by Sibson

[Sibson 1980], which are defined using the Voronoi Diagram of

the input and query points (see details in Section 3.2). The NNC-

weighted sum of scalar data has several desirable properties as an

interpolant, such as exact interpolation, reproducing constant and

linear functions, being smooth (except at the input points), and local

computations (due to the locality of natural neighbors). To improve

the smoothness of NNC at input points, various higher-order ex-

tensions of NNC have been proposed, such as the 𝐶1
coordinates of

Sibson [Sibson 1981] and Farin [Farin 1990] and the 𝐶2
coordinates

of Hiyoshi [Hiyoshi and Sugihara 2004]. These coordinates allow

interpolation of not only values, but also derivatives at input points.

We refer readers to [Bobach 2009] for an excellent survey on the

topic of natural-neighbor-based interpolation.

Instead of taking weighted sum of data, we blend local functions

using NNC as blending weights. By choosing suitable local func-

tions, our interpolant achieves smooth interpolation of Hermite data

without using higher-order coordinates. Besides, we observed that

our blended Hermite interpolant produces less undulations than

interpolation using higher-order variants of NNC (see Figure 5).

2.1.2 Radial Basis Functions (RBF). An RBF interpolant consists of

weighted sum of radial kernels centered at the points, where the

weights (called coefficients) are found by solving a linear system de-

fined by the given scalar data. RBF can be generalized to interpolate

Hermite data, known as Hermite RBF (or HRBF), to which Duchon’s

interpolant belong (see details in Section 3.3). We refer readers to

books [Buhmann 2003; Wendland 2004] for in-depth discussions on

theoretical and computational aspects of RBF.

With globally supported kernels, (H)RBF can be computation-

ally expensive to solve and evaluate when the point number is

large. While compactly supported kernels (e.g., Wendland’s func-

tions [Wendland 1995]) can reduce complexity, they are not suited

for interpolating sparse samples due to the limited support (e.g., Fig-

ure 5 (f)). The Fast Multipole Method (FMM) accelerates evaluations

of globally supported kernels using far-field expansions, and it can

achieve impressive speed-up in asymptotic complexity [Greengard

and Rokhlin 1987]. However, the practical overhead of FMM can be

significant for large inputs. For example, [Carr et al. 2001] reports

over three hours for solving RBF at 80K points, and more recently

[Zhong et al. 2020] reports more than 6 minutes to solve HRBF at

60K points. In contrast, our interpolant takes just a few minutes to

solve for a million points (see Figure 16 and Table 5).

Another way to speed up RBF is to use partition-of-unity [Franke

and Nielson 1980]. This approach uses a set of overlapping sub-

domains and defines an RBF interpolant over points inside each

subdomain. These local interpolants are then blended using smooth

weights that vanish outside each subdomain and have unit sum. Ex-

isting methods typically use disks or boxes as subdomains [Franke

1982; Wendland 2004], constructed such that each subdomain con-

tains a bounded number of points. However, similar to the use of

kernels with compact support, the use of fixed-size subdomains

reduces the ability to interpolate data across large gaps.

We follow the same partition-of-unity approach to approximate

Duchon’s interpolant but replace the fixed-size subdomains with the

natural neighborhood around each point. This choice is motivated

in part by the piecewise structure of Duchon’s interpolant in 1D

and in part by the adaptivity of natural neighborhoods to point dis-

tributions. Using NNC as blending weights, our blended interpolant

was found to closely approximate Duchon’s interpolant, even for

sparse and non-uniform data (Figures 5 and 7), while maintaining

locality in computation.
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2.2 Implicit surface reconstruction
We briefly review methods that, like ours, reconstruct a surface

as the zero level set of an implicit function. Besides the implicit

approach, the surface can be reconstructed using explicit approaches,

such as Delaunay triangulation [Amenta et al. 2001; Bernardini et al.

1999; Dey and Goswami 2003] and mesh deformation [Hanocka et al.

2020]. We refer readers to surveys [Berger et al. 2017; Huang et al.

2024] for comprehensive discussions on surface reconstruction.

2.2.1 Points with normals. Given normal vectors associated with

points, many methods aim at reconstructing a signed-distance-like

function whose gradient at each point aligns with the given normal.

The partition-of-unity approach was used to blend linear functions

[Boissonnat and Cazals 2002; Hoppe et al. 1992] and polynomials

[Ohtake et al. 2003a] defined in local neighborhoods. Moving Least

Squares (MLS) solves for a local polynomial per spatial location that

fits nearby samples and normals [Dey and Sun 2005; Guennebaud

and Gross 2007; Kolluri 2008; Öztireli et al. 2009; Shen et al. 2004].

Both RBF andHRBF have been used, with the former applied to offset

points in the normal directions with signed values [Carr et al. 2001;

Dinh et al. 2002; Morse et al. 2001; Ohtake et al. 2003b; Samozino

et al. 2006; Turk and O’Brien 2002; Walder et al. 2007] and the latter

interpolating normals vectors and zero values [Brazil et al. 2010;

Ijiri et al. 2013; Liu et al. 2016].

Another class of methods reconstruct an “indicator function”,

which is 1 (resp. 0) in the interior (resp. exterior) of the shape. The

Poisson Reconstruction method [Kazhdan et al. 2006] and its vari-

ants [Kazhdan and Hoppe 2013; Manson et al. 2008; Pan and Skala

2012; Taubin 2012] solve the Poisson equation guided by a smooth

vector field obtained from the normals. Methods like [Barill et al.

2018; Lu et al. 2018] reconstruct the electric potential field defined by

dipoles, also known as generalized winding numbers. While being ef-

ficient and producing smooth surfaces, these methods are not suited

for downstream tasks that require distances and gradients away

from the surfaces (e.g., computing offsets or volume rendering). In

addition, we found that these methods may not handle sparse inputs

or missing points as robustly as global interpolation methods, such

as HRBF (see Figure 8).

2.2.2 Points without normals. One way to deal with the lack of

normals is to first compute an unsigned distance field and then sign
the field afterwards [Giraudot et al. 2013; Hornung and Kobbelt

2006; Mullen et al. 2010; Poranne et al. 2010]. However, inferring an

accurate unsigned distance function is a challenging problem itself,

and a dense sampling is often required. Additionally, the two-step

approach increases the complexity of implementation as well as the

number of parameters.

Other methods, like ours, compute the implicit function in a sin-

gle step by solving a variational problem [Alliez et al. 2007; Lu et al.

2005; Schölkopf et al. 2004; Walder et al. 2005; Zhao et al. 2001].

The optimization objective includes fitting accuracy and various

regularization terms to encourage smooth surfaces while avoiding

the trivial (constant zero) solution. Some of them require domain

discretization [Alliez et al. 2007; Lu et al. 2005; Zhao et al. 2001] or

numerical integration [Walder et al. 2005], and all involve multiple

parameters to tune. In contrast, the variational method of [Huang

et al. 2019] involves a single parameter that controls the amount of

approximation (zero for exact interpolation), requires no discretiza-

tion or integration, and was shown to be more robust in surfacing

sparse points than previous variational methods. Its main drawback,

which we address in this paper, is its prohibitive computational cost

(see details in Section 3.3).

Implicit functions, such as occupancy function or signed distance

functions (SDFs), can also be obtained directly from point clouds

using data-driven methods [Chen and Zhang 2019; Mescheder et al.

2019]. In particular, recent methods such as [Erler et al. 2024, 2020]

improve the generalizability of previous approaches by combining

learned priors at both global and local levels. However, handling

sparse samples and capturing fine features remain challenging for

learning-based methods, as we show in Figures 1 (d) and 15.

2.2.3 Normal estimation. Given a point cloud, normal vectors can

be estimated in two phases, a local phase that computes an un-

oriented line direction at each point based on its local neighborhood,

and a global phase that obtains a consistent orientation among all

points. The un-oriented directions can be obtained by locally fitting

planes [Hoppe et al. 1992] or polynomials [Cazals and Pouget 2003;

Guennebaud and Gross 2007], or by analyzing the shape of Voronoi

cells [Alliez et al. 2007; Merigot et al. 2011]. While robustness can

be improved for noisy samples [Mitra et al. 2004] and around sharp

features [Boulch and Marlet 2012; Li et al. 2010] by choosing suit-

able local neighborhoods, obtaining correct directions on sparse

samples remains difficult. Approaches for the global phase include

computing the Minimum Spanning Tree [Hoppe et al. 1992], itera-

tive propagation [Metzer et al. 2021], and global optimization [Ma

et al. 2024; Schertler et al. 2017; Xiao et al. 2023]. As errors in un-

oriented directions generally cannot be corrected by flipping the

orientations, handling sparse samples is inherently challenging for

the two-phase approach.

Other methods estimate oriented normal vectors in a single phase

via global optimization [Hou et al. 2022; Lin et al. 2024, 2022; Wang

et al. 2011; Xu et al. 2023]. Many of these methods simultaneously

solve for the normals and an implicit function, and their objectives

are based on characteristics of an indicator function, such as a fixed

value (0.5) at each point [Lin et al. 2024, 2022], bimodal distribution

of values (around 0 and 1) elsewhere [Xu et al. 2023], and normal-

aligned gradients at input points [Hou et al. 2022; Lin et al. 2024].

These variational methods show greatly improved robustness over

two-phase approaches. However, we found in our experiments that

these methods still struggle in sparsely sampled regions (e.g., Figure

1 (b) and more in Section 8).

3 Preliminaries
To make the paper self-contained, we briefly review the fundamen-

tal concepts and detail two prior methods that our work builds upon,

namely Sibson’s Natural Neighbor Coordinates [Sibson 1980] (Sec-

tion 3.2) and the variational reconstruction method, VIPSS [Huang

et al. 2019] (Section 3.3).
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3.1 Voronoi Diagram, Delaunay Triangulations, and
natural neighbors

Given a finite set of points𝑋 = {𝑥1, . . . , 𝑥𝑛} inR𝑑 , the Voronoi cell of
each 𝑥𝑖 consists of all locations that are no further from 𝑥𝑖 than from

any other 𝑥 𝑗 ∈ 𝑋 ( 𝑗 ≠ 𝑖). Each Voronoi cell is a convex polyhedron,

and the union of all Voronoi cells and their boundary facets is the

Voronoi Diagram (VD) of 𝑋 . The dual of VD of 𝑋 is the Delaunay
Triangulation (DT) of 𝑋 , which consists of 𝑑-dimensional simplices

(e.g., edges, triangles and tetrahedra for 𝑑 = 1, 2, 3) that form a

disjoint partitioning of the convex hull of 𝑋 . Each 𝑘-dimensional

element of DT corresponds to a (𝑑 − 𝑘)-dimensional element of VD.

The natural neighbors of 𝑥𝑖 ∈ 𝑋 is the set of points 𝑥 𝑗 ∈ 𝑋

whose Voronoi cells share common facets with the Voronoi cell

of 𝑥𝑖 . Equivalently, each such 𝑥 𝑗 is connected to 𝑥𝑖 by a DT edge.

Intuitively, 𝑥 𝑗 is a natural neighbor of 𝑥𝑖 if and only if there exists a

𝑑-sphere with 𝑥𝑖 , 𝑥 𝑗 on the sphere and no other point of 𝑋 inside.

Figure 2 shows the VD (a) and DT (b) of a set of points in 2D,

highlighting a point (green) and its natural neighbors (red).

3.2 Natural Neighbor Coordinates
Natural Neighbor Coordinates (NNC) were introduced by Sibson

[Sibson 1980] to smoothly and locally interpolate scattered (scalar)

data. Given scalar values 𝑠𝑖 associated with each point 𝑥𝑖 ∈ 𝑋 , a

scalar function can be defined as aweighted sum 𝑓 (𝑥) = ∑𝑛
𝑖=1𝑤𝑖 (𝑥)𝑠𝑖 .

For a point 𝑥 inside the convex hull of 𝑋 , Sibson defines the weight

function𝑤𝑖 (𝑥) as the volume fraction of the Voronoi cell of 𝑥 in the

VD of the union set 𝑋 ∪ {𝑥} that comes from the Voronoi cell of 𝑥𝑖
in the VD of 𝑋 . That is,

𝑤𝑖 (𝑥) =
𝑣𝑜𝑙 (𝑉𝑋 (𝑥𝑖 ) ∩𝑉𝑋∪{𝑥 } (𝑥))

𝑣𝑜𝑙 (𝑉𝑋∪{𝑥 } (𝑥))
(1)

where 𝑉𝑋 (𝑥𝑖 ) denotes the Voronoi cell of 𝑥𝑖 in the VD of 𝑋 . In the

illustration in Figure 2 (c), the intersection region in the numerator

of Equation 1 is shaded.. NNC have several properties that make

them ideal for scattered data interpolation, including partition of

unity (i.e.,

∑𝑛
𝑖=1𝑤𝑖 (𝑥) = 1), Lagrange property (i.e.,𝑤𝑖 (𝑥𝑖 ) = 1 and

𝑤 𝑗 (𝑥𝑖 ) = 0 for any 𝑗 ≠ 𝑖), linear reproduction (i.e.,

∑𝑛
𝑖=1𝑤𝑖 (𝑥)𝑥𝑖 =

𝑥 ), 𝐶𝑑−1
continuity except at the points 𝑋 (where they are 𝐶0

), and

local support.

The Voronoi cell 𝑉𝑋∪{𝑥 } (𝑥) has an infinite volume when 𝑥 lies

outside the convex hull of 𝑋 , where NNC become undefined. To

extend NNC beyond the convex hull, a simple strategy is to add ghost
points to expand the convex hull [Bobach 2009]. These ghost points,

denoted by 𝑌 and located on a convex shape that encloses𝑋 , are not

associated with any Hermite data and hence have zero coordinates.

To maintain a partition of unity, NNC can be modified so that the

denominator in Equation 1 only considers the contributions from

Voronoi cells of the input points 𝑥𝑖 ∈ 𝑋 :

𝑤𝑖 (𝑥) =
𝑣𝑜𝑙 (𝑉𝑋 ′ (𝑥𝑖 ) ∩𝑉𝑋 ′∪{𝑥 } (𝑥))∑
𝑖 𝑣𝑜𝑙 (𝑉𝑋 ′ (𝑥𝑖 ) ∩𝑉𝑋 ′∪{𝑥 } (𝑥))

, (2)

where 𝑋 ′ = 𝑋 ∪ 𝑌 . It can be verified that the modification retains

all properties of NNC in the larger convex hull of Y, except linear

reproduction, which is lost when 𝑥 ’s natural neighbors include ghost

Fig. 2. The Voronoi Diagram (a) and Delaunary Triangulation (b) of 2D
points, highlighting a point (green) and its natural neighbors (red), and an
illustration for Natural Neighbor Coordinates (c).

points. In this paper, we call the modified weights in Equation 2 the

extended NNC.

3.3 VIPSS
The idea behind [Huang et al. 2019] is to find a smooth, signed-

distance-like implicit function whose zero level set approximates

the input points 𝑋 . By representing the function as a Hermite in-

terpolant, the problem can be formulated as seeking the Hermite

data consisting of scalars 𝑆 = {𝑠1, . . . , 𝑠𝑛} and unit-length vectors

𝐺 = {𝑔1, . . . , 𝑔𝑛} that minimizes the squared scalars (fitting term)

and non-smoothness of the interpolant (regularization term)
1
:

Minimizes: 𝑆𝑇 𝑆 + 𝜆 𝐸 (𝑓𝑆,𝐺 )
Subject to: 𝑔𝑖

𝑇𝑔𝑖 = 1, ∀𝑖 = 1, . . . , 𝑛
(3)

Here, 𝑓𝑆,𝐺 is a function that interpolates {𝑆,𝐺} (i.e., values and gra-

dients of 𝑓𝑆,𝐺 are {𝑠𝑖 , 𝑔𝑖 } at each 𝑥𝑖 ), 𝐸 is some energy that measures

the non-smoothness of a function, and 𝜆 is the balancing weight.

Once the solution Hermite data {𝑆∗,𝐺∗} is found, its interpolant
𝑓𝑆∗,𝐺∗ is the reconstructed implicit function.

The two key ingredients in this formulation are the Hermite in-

terpolant 𝑓𝑆,𝐺 and the energy 𝐸. For the former, Huang et al. [2019]

adopts the Duchon’s interpolant [Duchon 1977], which excels at

smoothly interpolating sparse samples. The interpolant is repre-

sented as HRBF with a globally supported kernel,

𝑓𝑆,𝐺 (x) =
𝑛∑︁
𝑖=1

𝑎𝑖𝜙 (𝑥, 𝑥𝑖 ) +
𝑛∑︁
𝑖=1

𝑏𝑇𝑖 𝐷
0,1𝜙 (𝑥, 𝑥𝑖 ) + 𝑝𝑇𝑋 + 𝑞 (4)

where 𝜙 (𝑥,𝑦) = ∥𝑥 − 𝑦∥3 is the triharmonic kernel, 𝐷 is the deriva-

tive operator (𝐷𝑖, 𝑗𝜙 (𝑥,𝑦) takes the 𝑖-th and 𝑗-th partial derivatives

of 𝜙 w.r.t. 𝑥 and 𝑦), and coefficients 𝑎𝑖 ∈ R, 𝑏𝑖 ∈ R𝑑 , 𝑝 ∈ R𝑑 , 𝑞 ∈ R
are determined by Hermite data {𝑆,𝐺} via a system of linear equa-

tions that enforces interpolation (𝑓𝑆,𝐺 (𝑥𝑖 ) = 𝑠𝑖 , 𝐷 𝑓𝑆,𝐺 (𝑥𝑖 ) = 𝑔𝑖 for

all 𝑖) and additional constraints necessary for the existence of a

1
All vectors in this paper are assumed to be column vectors.
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unique solution (

∑
𝑖 𝑎𝑖 = 0 and

∑
𝑖 𝑎𝑖𝑥𝑖 +

∑
𝑖 𝑏𝑖 = 0):

𝑀

©«
𝐴

𝐵

𝑝

𝑞

ª®®®¬ =
©«
𝑆

𝐺

0

0

ª®®®¬ (5)

Here, 𝐴 = {𝑎1, . . . , 𝑎𝑛}, 𝐵 is the flattened array of {𝑏1, . . . , 𝑏𝑛}, and
𝐺 is the flattened array of {𝑔1, . . . , 𝑔𝑛}. The matrix𝑀 , a symmetric

matrix of length (𝑑 + 1) (𝑛 + 1), is known as the interpolation matrix.
For the energy𝐸, Huang et al. adopts theDuchon’s energy [Duchon

1977], a 2nd-order integralmeasure that generalizes the 1-dimensional

thin plate energy. Given Hermite data {𝑆,𝐺}, Duchon’s energy is

minimized by the Duchon’s interpolant defined above. Furthermore,

the minimal energy has a simple closed form:

𝐸 (𝑓𝑆,𝐺 ) =
(
𝑆𝑇 𝐺𝑇

)
𝐽

(
𝑆

𝐺

)
, (6)

where 𝐽 is the top-left block of length (𝑑+1)𝑛 in𝑀−1
. This simplifies

the objective in Equation 3 to a quadratic function of {𝑆,𝐺},

𝑆𝑇 𝑆 + 𝜆

(
𝑆𝑇 𝐺𝑇

)
𝐽

(
𝑆

𝐺

)
(7)

The global nature of both Duchon’s interpolant and Duchon’s

energy allows VIPSS to robustly surface sparse and non-uniformly

distributed points. However, it also leads to a high computational

cost. In particular, constructing the matrix 𝐽 in Equation 7 involves

inverting the interpolation matrix𝑀 , a dense matrix of size 𝑂 (𝑛2),
which takes𝑂 (𝑛3) time. The optimization solver takes𝑂 (𝑛2) time in

each iteration to compute the objective and gradient. Quadratic com-

plexity also applies to the construction of the Duchon’s interpolant

from the solved Hermite data, which involves solving Equation 5

by multiplying the rhs with the already computed𝑀−1
. The high

complexity limits the practical use of VIPSS to just a few thousand

points, beyond which it quickly becomes too time-consuming.

4 Motivation and overview
To scale up variational reconstruction, our idea is to replace the

global interpolant and energy in the variational formulation of

VIPSS (Equation 3) with ones that can be locally computed, without

compromising its ability to handle sparse and non-uniform point

distributions.

Our local formulations are motivated by observing the piecewise

structure in Duchon’s interpolant in one dimension (𝑑 = 1), which

leads to significantly lower computational complexity. In this case,

Duchon’s interpolant is the piecewise cubic Hermite Spline, where
each piece is a cubic function interpolating the values and deriva-

tives between two adjacent points – precisely Duchon’s interpolant

over those two points (see Figure 3 (a)). Constructing the (global)

interpolant over all points therefore amounts to constructing the

𝑛 − 1 (local) two-point interpolants, which takes linear time instead

of quadratic for the global interpolant.

Furthermore, Duchon’s energy of the global interpolant can also

be replaced by the sum of energy of local, two-point interpolants.

This is because Duchon’s interpolant in 1D is only non-linear within

the interval spanned by the input points, and the intervals between

successive points form a disjoint partition of the interval spanned by

Fig. 3. Duchon’s interpolant in 1D (gray curve) of values and derivatives
(black circles and lines) overlaid with Duchon’s interpolants of a pair (a)
and two triples (b) of consecutive data points.

all points. The summative form of energy takes linear time to con-

struct or evaluate, in contrast to the cubic or quadratic complexity

to perform the same tasks using the original Duchon’s energy.

Unfortunately, Duchon’s interpolant in higher dimensions no

longer possesses a simple piecewise structure. To this end, we intro-

duce a new Hermite interpolant that closely approximates Duchon’s

interpolant but can be locally computed (Section 5). The new inter-

polant has a semi-piecewise structure that gives rises to a summative

energy definition, which enables local computations for variational

reconstruction (Section 6). We end the technical discussion by a

complexity analysis of our method (Section 7).

5 Hermite interpolation
Given points 𝑋 = {𝑥1, . . . , 𝑥𝑛} in R𝑑 associated with scalars 𝑆 =

{𝑠1, . . . , 𝑠𝑛} and vectors𝐺 = {𝑔1, . . . , 𝑔𝑛}, we seek a smooth Hermite

interpolant whose value and gradient at each point 𝑥𝑖 coincide with

𝑠𝑖 and 𝑔𝑖 . The energy of this interpolant will be used as a regularizer

in our variational problem (see next section), and the interpolant of

the optimized Hermite data will be the reconstruction output.

Ideally, the Hermite interpolant should robustly handle sparse

and non-uniform samples, like Duchon’s interpolant, but can be

locally constructed. Our definition is motivated by the piecewise

structure of Duchon’s interpolant in 1D. There, the global Duchon’s

interpolant over all points is made up of local Duchon’s interpolants

over pairs of consecutive points. Moving to higher dimensions, we

define local Duchon’s interpolants over subsets of the input points
(Section 5.1). These local interpolants are then blended in a partition-

of-unity approach to be our final interpolant (Section 5.2).

5.1 Defining local interpolants
The building blocks of our interpolant are Duchon’s interpolants

over subsets 𝑋𝑖 ⊆ 𝑋 . Our choice of the subsets is guided by two

considerations. On one hand, to achieve locality, the size of each

subset should be as small as possible. On the other hand, to en-

able blending, the space spanned by each subset (i.e., its “support”)

should be large enough to cover the domain with sufficient overlaps

between neighboring subsets.

As a motivating example, let’s consider the one-dimensional case

again. As discussed previously, Duchon’s interpolant defined over
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Fig. 4. Left: input 2D Hermite data (a) and the global Duchon’s interpolant as a height surface (b). Middle: local Duchon’s interpolants over two subsets as
(light blue) height surfaces (d) and their differences to the global Duchon’s interpolant (e). Right: NND using three ghost point configurations (top).

two consecutive points {𝑥𝑖 , 𝑥𝑖+1} exactly matches Duchon’s inter-

polant over all points in the interval [𝑥𝑖 , 𝑥𝑖+1]. However, these inter-
vals are disjoint from each other. To enable overlaps, we can define

each subset 𝑋𝑖 to include a point 𝑥𝑖 and its left and right neighbors,
𝑥𝑖−1 (if 𝑖 > 1) and 𝑥𝑖+1 (if 𝑖 < 𝑛). Duchon’s interpolant over each

such 𝑋𝑖 coincides with the global interpolant in the extended inter-

val [𝑥𝑖−1, 𝑥𝑖+1] (i.e., the support of 𝑋𝑖 ), and the supports of 𝑋𝑖 and

𝑋𝑖+1 overlap in [𝑥𝑖 , 𝑥𝑖+1] (see Figure 3 (b)).
A natural generalization of the subsets above to 𝑑 > 1 dimensions

is to have each𝑋𝑖 consist of 𝑥𝑖 and its natural neighbors (reviewed in
Section 3.1). Note that, for 𝑑 = 1, the natural neighbors are precisely

the left and right neighbors (if they exist). For 𝑑 > 1, the natural-

neighbor-based subsets offer an overlapping coverage of the domain,

regardless of the point distributions. Specifically, if we consider the

Delaunay Triangulation (DT) simplicies (e.g., edges, triangles, or

tetrahedra for 𝑑 = 1, 2, 3) containing 𝑥𝑖 as the support of 𝑋𝑖 , the

union of supports of all subsets covers the convex hull of 𝑋 , and the

supports of subsets centered at two points connected by a DT edge

overlap in DT simplicies containing that edge. Compared to fixed-

size neighborhood definitions, such as points within a fixed distance

or 𝑘-nearest neighbors, the size (both in dimension and cardinality)

of a natural neighborhood varies with the local distribution of points

to ensure a well-covered domain. The adaptability makes natural

neighbors ideal for defining subsets used in blending, particularly

on non-uniform samples.

Empirically, we observed that Duchon’s interpolant over a subset

defined using natural neighbors locally resembles Duchon’s inter-

polant over all points. This is demonstrated in 2D in Figure 4. The

input in (a) consists of planar points associated with zero scalars

(i.e., 𝑠𝑖 ≡ 0) and unit-length vectors, indicated by the magenta lines.

The local Duchon’s interpolants over two subsets, each consisting of

an input point (green) and its natural neighbors (red), are visualized

as height surfaces (light blue) in (d) and by their differences to the

global Duchon’s interpolant over all points in (c). Note that the local

and global interpolants closely overlap near the respective subsets.

The resemblance makes these local interpolants suited for blending.

5.2 Blending interpolants
We follow the partition-of-unity strategy [Franke 1982] to construct

our Hermite interpolant by blending the Duchon’s interpolants over

all natural-neighbor-based subsets,

˜𝑓𝑆,𝐺 (𝑥) =
𝑛∑︁
𝑖=1

𝑤𝑖 (𝑥) 𝑓𝑆𝑖 ,𝐺𝑖
(𝑥), (8)

where {𝑆𝑖 ,𝐺𝑖 } are the Hermite data associated with subset 𝑋𝑖 and

𝑤𝑖 (𝑥) is the blending weight of 𝑥 w.r.t. 𝑋𝑖 .

A good candidate of the blending weights is the Natural Neighbor

Coordinates (NNC) [Sibson 1980]. As reviewed in Section 3.2, NNC

enjoys an array of properties suited for scattered data interpolation,

such as partition-of-unity, Lagrange property, smoothness (away

from 𝑋 ), locality, and linear reproduction. While NNC is only de-

fined within the convex hull of 𝑋 , the restriction can be relaxed by

introducing ghost points outside 𝑋 and using the extended NNC

(Equation 2). Accordingly, we modify the subsets𝑋𝑖 to include those

points in 𝑋 (not ghost points) that are natural neighbors of 𝑥𝑖 in the

union set of 𝑋 and the ghost points.

The key limitation of both NNC and extended NNC is that they

are not smooth at the input points 𝑋 . This is problematic for recon-

structing a smooth surface that interpolates𝑋 . Also, unlike NNC, the

extended NNC does not warrant linear reproduction. Fortunately,

these limitations disappear when we combine extended NNC with

Duchon’s interpolants over natural neighborhoods. As we show
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Fig. 5. Comparing 2D Hermite interpolation using Duchon’s interpolant (a), our NND (b), Sibson’s𝐶1 coordinates [Sibson 1981] (c), Farin’s𝐶1 coordinates
[Farin 1990] (d), method of [Boissonnat and Cazals 2002] (e), and HRBF with a compactly supported kernel (f). Each function is visualized by colors with
contours (top, thick curve is zero contour) and the height surface (bottom).

below, the blended interpolant
˜𝑓𝑆,𝐺 (𝑥) is𝐶1

continuous everywhere

and reproduces linear functions (see proof in Appendix A):

Proposition 5.1. The following properties hold for ˜𝑓𝑆,𝐺 (𝑥) in
Equation 8, given𝑤𝑖 (𝑥) defined by Equation 2, ghost points 𝑌 , and 𝑥
inside the convex hull of 𝑌 :

(1) Interpolation: ˜𝑓𝑆,𝐺 (𝑥𝑖 ) = 𝑠𝑖 , 𝐷 ˜𝑓𝑆,𝐺 (𝑥𝑖 ) = 𝑔𝑖 for all 𝑥𝑖 ∈ 𝑋 .
(2) Smoothness: 𝐷 ˜𝑓𝑆,𝐺 (𝑥) exists for any 𝑥 .
(3) Linear reproduction: If these is a linear function 𝑓 such that

𝑠𝑖 = 𝑓 (𝑥𝑖 ) and 𝑔𝑖 = 𝐷𝑓 (𝑥𝑖 ) for every 𝑖 = 1, . . . , 𝑛, then ˜𝑓𝑆,𝐺 =

𝑓 .

We call the blended interpolant
˜𝑓𝑆,𝐺 (Equation 8), with our natural-

neighbor-based choices of subsets and blendingweights, theNatural-
Neighbor Duchon’s interpolant (or NND). Although lacking theo-

retical analysis, we found in our experiments that NND closely

approximates Duchon’s interpolant. Furthermore, the choice of the

ghost points seems to have little impact on the interpolant. This is

demonstrated in Figure 4, where we explored three choices of ghost

point configurations, shown at the top of (e), with varying numbers

of ghost points (blue) and their distances to the input points (black).

Observe from the difference maps (e) and height surfaces (f) that

NND remains a close approximation of Duchon’s interpolant in

each configuration.

Comparedwith existing, locally-computableHermite interpolants,

NND appears to produce smoother-looking interpolations that more

closely resemble Duchon’s interpolant. As shown in Figure 5, in-

terpolations using higher-order extensions of NNC, such as the 𝐶1

coordinates of Sibson [1981] and Farin [1990], exhibit notable undu-

lations as indicated in (c,d). Similarly to our approach, Boissonnat

and Cazals [2002] use NNC as weights to blend local Duchon’s in-

terpolants over subsets. However, each of their subset 𝑋𝑖 consists of

a single point 𝑥𝑖 , and their method inherits the non-smoothness of

NNC at each input point, as seen in (e). Lastly, methods using fixed-

size neighborhoods, such as HRBF with compactly supported ker-

nels, may have difficulty connecting distant samples, as shown in (f).

Here, we use a compactly supported kernel 𝜙 (𝑥,𝑦) = 𝜓 (∥𝑥 − 𝑦∥/𝑟 ),
where𝜓 is the Wendland’s function (𝜓 (𝑑) = (1−𝑑)4 (1+4𝑑) if 𝑑 ≤ 1

and 𝜓 (𝑑) = 0 otherwise) and the kernel size 𝑟 is the radius of the

blue dotted circle drawn at the top of (f).

6 Variational reconstruction
The local Hermite interpolant, NND, possesses a semi-piecewise
structure as it blends together (overlapping) pieces, each being

Duchon’s interpolant 𝑓𝑆𝑖 ,𝐺𝑖
over a subset 𝑋𝑖 . The structure suggests

a simple definition of its energy as the sum of Duchon’s energies of

all pieces,

𝐸 ( ˜𝑓𝑆,𝐺 ) =
𝑛∑︁
𝑖=1

𝐸 (𝑓𝑆𝑖 ,𝐺𝑖
), (9)

Using the closed-form of Duchon’s energy (Equation 6), we obtain a

local, natural-neighborhood-based reformulation of the variational

problem in VIPSS (Equation 3) as

Minimizes: 𝑆𝑇 𝑆 + 𝜆
∑𝑛
𝑖=1

(
𝑆𝑇
𝑖

𝐺𝑇
𝑖

)
𝐽𝑖

(
𝑆𝑖
𝐺𝑖

)
Subject to: 𝑔𝑖

𝑇𝑔𝑖 = 1, ∀𝑖 = 1, . . . , 𝑛.

(10)

Here, 𝐽𝑖 is the top-left block of length (𝑑 + 1) |𝑋𝑖 | in the inverse of

the interpolation matrix of the subset 𝑋𝑖 . We call the zero level set

of
˜𝑓𝑆∗,𝐺∗ , where {𝑆∗,𝐺∗} is the solution to Equation 10, the Natural-

Neighbor VIPSS (or NN-VIPSS).
We next show that NN-VIPSS inherits the same properties of

VIPSS that are desirable for surface reconstruction, including exact

interpolation, linear reproduction, and commutativity with similar-

ity transformations. We will then discuss our strategy for solving

the minimization problem in Equation 10, including a local method

for initialization.
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6.1 Properties
We first show that NN-VIPSS exactly interpolates all input points

when 𝜆 = 0. In this case, the second term in the objective of Equa-

tion 10 vanishes, and 𝑆 = 0 becomes the trivial minimizer. To op-

timize the vectors 𝐺 at 𝜆 = 0, observe that the objective becomes

𝜆
∑𝑛
𝑖=1𝐺

𝑇
𝑖
𝐽 ′
𝑖
𝐺𝑖 when 𝑆 = 0, where 𝐽 ′

𝑖
is the lower-right block of 𝐽𝑖

of length 𝑑 |𝑋𝑖 |. Hence the minimizer 𝐺 of Equation 10 as 𝜆 → 0 is

the solution to the following reduced (and parameter-free) problem:

Minimizes:

∑𝑛
𝑖=1𝐺

𝑇
𝑖
𝐽 ′
𝑖
𝐺𝑖

Subject to: 𝑔𝑖
𝑇𝑔𝑖 = 1, ∀𝑖 = 1, . . . , 𝑛

(11)

Second, NN-VIPSS reproduces linear geometry. That is, if all

points lie on a (𝑑 − 1)-dimensional hyperplane 𝐿 in R𝑑 , NN-VIPSS
coincides with 𝐿. Since Duchon’s interpolant reproduces linear func-

tions, the local interpolants 𝑓𝑆∗
𝑖
,𝐺∗

𝑖
that interpolate the Hermite data

{𝑆∗,𝐺∗}, where 𝑆∗ = 0 and𝐺∗
assumes the unit normal of 𝐿, are the

same linear function 𝑓 whose zero level set is 𝐿. As linear functions

have zero Duchon’s energy, {𝑆∗,𝐺∗} is the solution to Equation 10

with zero objective, and NND interpolant
˜𝑓𝑆∗,𝐺∗ recovers 𝑓 due to

its linear reproduction property.

Lastly, NN-VIPSS is invariant to isometric transformations (trans-

lations and rotations). This is due to the isometry-invariance of

both Duchon’s energy and the extended NNC. Furthermore, like

VIPSS, NN-VIPSS has the following commutativity with uniform

scaling: the NN-VIPSS of points uniformly scaled by some factor 𝜎

is the same as the 𝜎-scaled NN-VIPSS of the original points, after

multiplying 𝜆 by 𝜎3. This can be stated formally as (see proof in

Appendix B),

Proposition 6.1. Let 𝑋,𝑋 be two point sets such that 𝑋 = 𝜎𝑋 for
some 𝜎 > 0. If Hermite data {𝑆∗,𝐺∗} associated with𝑋 is a solution of
Equation 10 w.r.t. some 𝜆 ≥ 0, then Hermite data {𝑆∗ = 𝜎𝑆∗,𝐺∗ = 𝐺∗}
associated with𝑋 is a solution w.r.t. ˆ𝜆 = 𝜎3𝜆. Furthermore, interpolant
˜𝑓
𝑆∗,�̂�∗ over 𝑋 is related to ˜𝑓𝑆∗,𝐺∗ over 𝑋 by ˜𝑓

𝑆∗,�̂�∗ = 𝜎 ˜𝑓𝑆∗,𝐺∗ (𝑥/𝜎).

6.2 Optimization
The constrained quadratic optimization problem of Equation 10

can be computationally challenging to solve. Huang et al. [2019]

optimizes VIPSS by representing each vector 𝑔𝑖 as two spherical

angles in some chosen coordinate system, thus eliminating the unit

vector constraints. We found that their approach can be sensitive to

the choice of the coordinate system and often results in high-energy

local minima (see Figure 10). Instead, we replace the hard constraints

by adding a soft penalty term measuring the deviation of 𝑔𝑖 from a

unit vector:

𝑆𝑇 𝑆 + 𝜆

𝑛∑︁
𝑖=1

(
𝑆𝑇
𝑖

𝐺𝑇
𝑖

)
𝐽𝑖

(
𝑆𝑖
𝐺𝑖

)
+ 𝜆𝛼

𝑛∑︁
𝑖=1

(𝑔𝑇𝑖 𝑔𝑖 − 1)2 (12)

The choice of weight 𝛼 trades off smoothness of the energy land-

scape (smoother for smaller 𝛼) with proximity of solution to NN-

VIPSS (closer for bigger 𝛼). It can be verified that the modified

objective retains the properties discussed in Section 6.1. In particu-

lar, interpolation is ensured at 𝜆 = 0, where the objective becomes∑𝑛
𝑖=1𝐺

𝑇
𝑖
𝐽 ′
𝑖
𝐺𝑖 + 𝛼

∑𝑛
𝑖=1 (𝑔𝑇𝑖 𝑔𝑖 − 1)2, and commutativity with scaling

holds after multiplying 𝛼 by 1/𝜎 where 𝜎 is the scaling factor. We

Fig. 6. Optimization process (𝜆 = 0). (a): Initial normal (green) at each
point (green) computed using its natural neighbors (red). (b): Normals (blue)
oriented using MST. (c): Optimized normals (magenta).

minimize this quartic objective using the L-BFGS method [Liu and

Nocedal 1989] (implemented in NLopt [Johnson 2007]) and normal-

ize the solved 𝑔𝑖 afterward.

To initialize the optimization, Huang et al. relaxes the unit-vector

constraint on each 𝑔𝑖 to be one on all vectors (i.e., 𝐺𝑇𝐺 = 1). This

transforms the constrained minimization of the objective in Equa-

tion 7 to finding the eigenvector of a matrix derived from 𝐽 , which

is a dense matrix of length 𝑂 (𝑛). As a result, the initialization step

has a high complexity of 𝑂 (𝑛3). Motivated by the summative form

of our new objective (Equation 10), we adopt a more efficient, local

approach for initialization.

First, we compute a scalar and vector at each point 𝑥𝑖 by per-

forming variational reconstruction locally on the subset 𝑋𝑖 (Figure

6 (a)). While we could employ VIPSS, it would involve a non-linear

optimization at each input point. Since we are only interested in

the Hermite variables at the point 𝑥𝑖 , we can formulate a reduced

minimization problem where the unit-vector constraint is only ap-

plied to the vector at 𝑥𝑖 and no other points in 𝑋𝑖 . The reduced

problem can be solved directly by computing the eigenvector of a

𝑑 × 𝑑 matrix (see details in Appendix C).

Next, given the resulting Hermite pair {𝑠′
𝑖
, 𝑔′

𝑖
} at each 𝑥𝑖 , we com-

pute a consistent orientation of all 𝑔′
𝑖
using the Minimum Spanning

Tree (MST) method of [Hoppe et al. 1992] on the Delaunay graph of

𝑋 (Figure 6 (b)). Specifically, we assign a weight to each Delaunay

edge between 𝑥𝑖 , 𝑥 𝑗 as |𝑔′𝑖 ·𝑔
′
𝑗
| and compute an MST of the weighted

graph. We then root the MST at any point, fix an arbitrary normal

orientation at the root, and traverse the MST from root to leaves

while flipping the normal at a node if it forms an abtuse angle with

the normal at its parent node (𝑠′
𝑖
is negated if 𝑔′

𝑖
is flipped).

7 Complexity analysis
Our method’s computational cost is largely determined by the sizes

of the natural neighborhoods, which in turn depend on the point

distribution. We will first analyze complexity as a function of the

number of natural neighbors of each point 𝑥𝑖 , denoted by 𝑛𝑖 . We

will then discuss the impact of point distributions on 𝑛𝑖 and, in turn,

our method’s scalability.

In the following, we assume the dimensionality 𝑑 is a fixed con-

stant, and we denote the sums

∑𝑛
𝑖 𝑛𝑖 ,

∑𝑛
𝑖 𝑛

2

𝑖
,
∑𝑛
𝑖 𝑛

3

𝑖
respectively by

𝑁1, 𝑁2, 𝑁3. Computing NN-VIPSS consists of three stages:
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(1) Computing Delaunay Triangulation (DT) of 𝑋 : The DT and

its dual Voronoi Diagram (VD) are needed to obtain natural

neighbors and compute the blending weights. Note that DT

and VD in 3D have a worst-case complexity of 𝑂 (𝑛⌈𝑑/2⌉ )
[McMullen 1970]. The most popular algorithms use incre-

mental point insertion [Bowyer 1981; Edelsbrunner and Shah

1994; Watson 1981]. The cost of each insertion step is gen-

erally proportional to the number of natural neighbors of

the inserted point. Adding the time for point location, the

(expected) complexity of this step is 𝑶 (𝑵1 + 𝒏 log 𝒏).

(2) Optimizing Hermite data (Section 6): It takes 𝑂 (𝑁3) time to

compute the matrices 𝐽𝑖 in the objective of Equation 10 by

inverting the corresponding interpolation matrices of length

𝑂 (𝑛𝑖 ). Initializing the Hermite data as described in Section

6.2 takes𝑂 (𝑁3) time to solve a local variational problem over

each𝑋𝑖 (using the eigenvector method in Appendix C) and an

additional 𝑂 (𝑁1 log𝑛) time to compute MST over DT edges.

In total, setting up the optimization takes 𝑶 (𝑵3 + 𝑵1 log 𝒏)
time. Finally, each solver iteration requires 𝑶 (𝑵2) time to

evaluate residues and gradients.

(3) Interpolating Hermite data (Section 5): Given the solved Her-

mite data, the NND interpolant
˜𝑓𝑆,𝐺 in Equation 8 is con-

structed by obtaining the coefficients of the local interpolants

𝑓𝑆𝑖 ,𝐺𝑖
via Equation 5. Using the inverse of interpolation ma-

trices computed in the previous stage, this takes 𝑶 (𝑵2) time.

Evaluating a query point 𝑥 involves locating 𝑥 in the DT of

𝑋 , which takes 𝑂 (log𝑛) time, and computing extended NNC

𝑤𝑖 (𝑥) and evaluating 𝑓𝑆𝑖 ,𝐺𝑖
at each natural neighbor 𝑥𝑖 of 𝑥 ,

both taking 𝑂 (𝑛𝑖 ) time. This brings the total time for one

NND evaluation to 𝑶 (
∑

𝒊∈𝒓𝒙 𝒏𝒊 + log 𝒏), where 𝑟𝑥 denotes

the (indices of) natural neighbors of 𝑥 .

The natural neighborhood size 𝑛𝑖 , and hence the complexity of

these stages, can vary significantly with how the points are dis-

tributed. We will consider two extreme scenarios (see summary in

Table 1). In the worst case, each 𝑥𝑖 can have𝑂 (𝑛) natural neighbors.
In 𝑑 = 3 dimensions, the only known cases that this happens is

when the points are sampled from 1D curves [Amenta et al. 2007].

In this case, the setup of NN-VIPSS optimization dominates the

complexity with𝑂 (𝑁3) = 𝑂 (𝑛4) time, making our method even less

scalable than VIPSS. Recall that VIPSS takes 𝑂 (𝑛3) time to set up

the optimization, 𝑂 (𝑛2) time for each solver iteration, and 𝑂 (𝑛2)
time to construct the Duchon’s interpolant.

At the other end of the spectrum, it is well-known that the number

of DT edges, which is half the sum of natural neighbors 𝑁1, is𝑂 (𝑛)
for “nicely” distributed points in a sphere [Dwyer 1989] or on a

(𝑑 − 1)-dimensional polyhedral surface [Amenta et al. 2007]. If we

further assume that the distribution is uniform and hence each 𝑛𝑖 is

𝑂 (1), our method only needs𝑂 (𝑛 log𝑛) time to compute DT and set

up the optimization,𝑂 (𝑛) time for each solver iteration and𝑂 (𝑛) for
building the interpolant, thus significantly improving the scalability

of VIPSS. In fact, our construction of the interpolant in this best-case

scenario is even faster than FMM, which needs 𝑂 (𝑛 log𝑛) time to

solve for the (H)RBFs coefficients [Greengard and Rokhlin 1987].

On the other hand, while FMM takes constant time to evaluate,

evaluating NND needs 𝑂 ( |𝑟𝑥 | + log𝑛) time. The number of natural

Table 1. Time complexity comparison in each algorithm step between VIPSS,
Fast Multipole Method (only for solving and evaluating HRBFs), and NN-
VIPSS (with best-case and worst-case scenarios of point distributions). DT
computation in NN-VIPSS is included in Optimization Setup. Best complex-
ity for each step is in bold.

VIPSS FMM

NN-VIPSS

Best-case Worst-case

Optimization

Setup 𝑂 (𝑛3) – 𝑶 (𝒏 log 𝒏) 𝑂 (𝑛4)
Solve (per iter) 𝑂 (𝑛2) – 𝑶 (𝒏) 𝑂 (𝑛3)

Interpolation

Solve 𝑂 (𝑛2) 𝑂 (𝑛 log𝑛) 𝑶 (𝒏) 𝑂 (𝑛3)
Evaluate 𝑂 (𝑛) 𝑶 (1) 𝑂 (log𝑛) 𝑂 (𝑛2)

neighbors of the query point 𝑥 , |𝑟𝑥 |, depends on the location of 𝑥 ,

with a worse-case of𝑂 (𝑛) and a best-case of𝑂 (1) if 𝑥 is drawn from

the same nice distribution as 𝑋 .

In our experiments, we found that most of the large inputs in

practice (e.g., digital scans) are closer to the best-case scenario above.

In particular, the number of natural neighbors 𝑛𝑖 is typically around

a few dozens and rarely goes above a hundred. As a result, our

method was able to process inputs with hundreds of thousands of

points within a few minutes, significantly exceeding VIPSS’s limit

of a few thousand points.

8 Results

8.1 Implementation details
Our method is implemented in C++ and builds on several libraries.

We use Tetgen [Hang 2015] to construct the DT, from which we

obtain the natural neighborhoods. We adopt the method described

in [Boissonnat and Cazals 2002] for computing the Natural Neighbor

Coordinates (NNC) of a query point. We use Armadillo [Sanderson

and Curtin 2016] with OpenBLAS [Xianyi et al. 2012] for most of

our linear algebra routines and Eigen [Guennebaud et al. 2010] with

OpenMP for efficient sparse matrix operations. Optimization is per-

formed using the L-BFGS [Liu and Nocedal 1989] implementation

in NLopt [Johnson 2007] with default parameters and 10,000 max-

imum iterations. We use OpenMP to parallelize most of our local,

per-point operations, such as constructing the matrices 𝐽𝑖 (Equation

10), initializing the Hermite data (Appendix C), constructing local

interpolants 𝑓𝑆𝑖 ,𝐺𝑖
, and evaluating those interpolants and blending

weights at each natural neighbor of the query point.

For Hermite interpolation, we use 42 ghost points located uni-

formly on a sphere (via icosahedral subdivision) circumscribing the

cube [−1.5, 1.5]3 (we scale all inputs to be within [−1, 1]3). Similar

to 2D (see Figure 4 (e,f)), we found that the number and location

of ghost points have little impact on our NND interpolant in 3D.

The level set of NND is discretized by first computing a tetrahedral

grid inside [−1.5, 1.5]3 using the adaptive refinement method of [Ju

et al. 2024] (with threshold 𝜖 = 0.003 or 0.1% of the grid dimension,

unless otherwise stated), followed by Marching Tetrahedra. Com-

pared to discretization methods based on uniform grids, such as

Marching Cubes, we found that adaptive grids can better capture

surface details without an excessively large grid.

Tests were run on a workstation running Ubuntu 24.04 with AMD

7950x CPU (4.5Hz and 32 threads), 64GB RAM, and NVidia RTX3090

GPU with 24GB RAM. Our method runs entirely on CPU, and GPU
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Fig. 7. Comparing the level set surfaces of NNDandDuchon’s interpolant on
sparse (top, 250 points), non-uniform (middle), and noisy (bottom) samples
of the Kitten. Input Hermite data are shown in the middle column (points
as blue dots and normals as magenta lines). NND level sets are colored by
distance to the corresponding level sets of Duchon’s interpolant (red for
distances greater than 0.04, or 2% of bounding box).

is only used for testing other methods that require it [Lin et al. 2024,

2022; Metzer et al. 2021].

8.2 Hermite interpolation
We start by evaluating our Hermite interpolant, NND (Section 5). As

in 2D, we observed that NND, despite its local formulation, closely

approximates the global Duchon’s interpolant. Figure 7 compares

both interpolants on three different samplings of the Kitten model.

The input Hermite data has zero values (i.e., points are exactly

interpolated) for the sparse and non-uniform samplings (top and

middle rows) and positive values (i.e., points are approximated) for

the noisy sampling (bottom rows). Observe that the level sets of the

two interpolants agree well in each sampling.

Fig. 8. Comparing SPR [Kazhdan and Hoppe 2013] (at octree level 10) and
our NND interpolant on oriented points that are sparse (left), non-uniform
(middle), or contain large missing regions (right). The input consists of
points and normals sampled from a thin plate (left, see side view at the top)
and torus (middle and right). NND assumes zero value at each point.

Like Duchon’s interpolant, NND has several advantages over

existing implicit reconstruction methods for points with normals.

First, existing methods like SPR [Kazhdan and Hoppe 2013] and

those based on generalized winding numbers [Barill et al. 2018; Lu

et al. 2018] produce an indicator function, which is discontinuous

at the zero level set and has vanishing gradient everywhere else. In

contrast, NND is 𝐶1
everywhere inside the convex hull of the ghost

points, and the function gradually increases or decreases away from

the zero level set, as seen in Figure 5 (b). This behavior mimics that

of a signed distance field and makes NND suited for downstream

tasks such as computing approximate offsets (e.g., the non-zero level

sets in Figure 7), adaptive domain refinement [Ju et al. 2024], and

volumetric rendering [Hart 1996]. Second, while methods like SPR

excel at producing smooth surfaces given densely sampled points

with normals, they are not as robust as NND in dealing with sparse,

non-uniform, or missing samples, as demonstrated in Figure 8.

8.3 Variational reconstruction
We next evaluate our variational reconstruction method, NN-VIPSS

(Section 6), on a variety of 3D inputs, with a focus on sparse and

non-uniform point distributions.

8.3.1 Parameters. Like VIPSS, NN-VIPSS employs a parameter 𝜆 to

balance the competing goals of data fitting and surface smoothness.

Setting 𝜆 = 0 leads to exact interpolation of all points (Section 6.1),

which is suited for noise-free inputs. Increasing 𝜆 leads to surfaces

with greater deviation from the input and generally smoother re-

constructions, which is more suited for inputs with noise. The effect

of 𝜆 is demonstrated in Figure 9.

We demonstrate in Figure 10 the benefit of using the soft penalty

term in Equation 12, weighted by parameter 𝛼 , over enforcing the
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Fig. 9. NN-VIPSS at increasing 𝜆 on a 20K sampling of Dragon from [Laric
2012].

gradients to have unit lengths as a hard constraint in Equation

10. For this extremely sparse input, initialization produces many

incorrect normals (see (b)), which are difficult to rectify using the

constrained approach (see the red box in (c)). In contrast, the soft

penalty affords more flexibility, which allows the optimization to

find a better solution (see (d)). In our test suite, we did not observe

notable differences for 𝛼 in the range between 10 and 100, and we

set 𝛼 = 50 in all tests.

8.3.2 Comparison setup. Besides VIPSS, we will compare with re-

cent methods for normal estimation, including two-step methods

such as Dipole [Metzer et al. 2021] and IsoConstraint [Xiao et al.

2023], and variational approaches such as PGR [Lin et al. 2022] (GPU

only), iPSR [Hou et al. 2022], GCNO [Xu et al. 2023], and WNNC

[Lin et al. 2024] (both GPU and CPU versions). We also consider

the latest data-driven method for implicit reconstruction without

normals, PPSurf [Erler et al. 2024]. The normal estimation meth-

ods involve multiple parameters. We found that their effects on the

results are not always intuitive, and so we leave most of them at de-

fault settings. WNNC has several preset configurations (called levels)
for controlling the smoothing of the winding number field. These

levels are tailored for different amounts of noise, and we found that

no single level works well for all sparse or non-uniform inputs. We

therefore hand-tune the level for each example and report the one

that performs best.

We compare the normals computed by these methods with ours

(i.e., the vectors in the optimized Hermite data) as well as the re-

sulting surfaces. Most of these methods resort to SPR for surface

reconstruction from the estimated normals. As SPR may fail on

sparse points even when the normals are correct (see Figure 8), for

fairness and consistency, we use our NND interpolant for all meth-

ods on noise-free examples where exact interpolation is desired. We

have verified that NND reconstructions are visually comparable,

if not better, than SPR on all such examples. We adopt SPR as the

reconstruction method for other methods on noisy examples, where

the desirable surfaces approximate instead of interpolate the points.

In this case, NND is not applicable for other methods, since it needs

Hermite data with non-zero values that are only provided by our

method and VIPSS. We use default parameters in SPR and an octree

depth of 10.

Fig. 10. Comparing optimized normals and surfaces using a hard con-
straint (Equation 10) (c) versus a soft penalty term (Equation 12) (d) given
the same initial normals (b) (𝜆 = 0). Input points (a) are sampled on
cross-sections of a torus. Points in (b,c,d) are jet-colored by angular dif-
ferences between computed and ground truth normals (blue/green/red
means parallel/orthogonal/anti-parallel directions).

8.3.3 Qualitative comparisons. We start with visual comparisons.

Figures 11 and 12 show the results on small-scale inputs - up to a

few thousand points - where all methods, including VIPSS, can be

applied. Observe that NN-VIPSS, like VIPSS, produces plausible nor-

mals and surfaces for extremely sparse (Figure 11) and non-uniform

(Figure 12) distributions, whereas other methods produce greater,

and often significant errors in normals that lead to notable surface

artifacts. In particular, the two-step normal orientation methods

(IsoConstraint and Dipole) rely on accurate un-oriented line direc-

tions, which are difficult to obtain from sparse points (e.g., the Torus

examples). The same applies to iPSR, as it is based on SPR, which

cannot handle extreme sparsity and large missing regions (see Fig-

ure 8). The other methods (WNNC, GCNO, PGR) are all based on

the generalized winding numbers [Barill et al. 2018], which work

well for uniformly sparse samples (e.g., Torus 1) but struggle with

non-uniform samples (e.g., Torus 2 and curve samples) and around

thin shape features (e.g., Bathtub and Chair). Note thatWNNC needs

different level parameters (0 and 5) to get the best results.

We next consider larger inputs consisting of tens or hundreds of

thousands of points. Methods that are limited to a few thousand

points, such as VIPSS and GNCO, or low tens of thousands of points,

such as PGR, are excluded from this evaluation. The examples in

Figures 1 and 13 are created by non-uniform Monte-Carlo sampling

of 3D shapes containing fine features, such as thin sheets (e.g.,

Helmets and Brain) and narrow tubes (e.g., Mobius), where point

density is low relative to the feature size; see close-ups on Brain

and Mobius. Such sparse sampling scenarios, similar to those in

Figure 11 (e.g., Torus 1 and Bathtub), are challenging for existing

normal estimation methods, which tend to create many topological

errors such as holes and disconnections. In contrast, our method

robustly captures these fine features and can more faithfully recover

the surface topology. For example, our Mobius reconstruction has

the closest genus (1311) to the ground truth (1316).
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Fig. 11. Comparing the normals and surfaces produced by various methods on sparse samples of 3D shapes (Tori and Bathtub taken from [Huang et al. 2019]
and Chair from [Huang et al. 2024]). Points are colored by normal differences with ground truth, and surfaces are colored by per-vertex distances to the
original shape (red for distances greater than 0.15). NN-VIPSS uses 𝜆 = 0. WNNC level is 0 for Torus 1 and Chair, and 5 for Torus 2 and Bathtub. All surfaces
are produced by NND.

Moving onto noisy data, we consider two simulated scans from

the benchmark [Berger et al. 2017] (Figure 14). These scans contain

multiple artifacts, such as noise, outliers, and large missing areas.

Compared to WNNC, which is one of the best performers in our

previous experiments, our method produces better reconstructions

near sparsely sampled regions (e.g., cigar in Lord) and missing parts

(e.g., legs in Lord and shaft hole in Anchor). We also compare with

SPR using the normals provided in the input scans. Even with the

additional normal input, SPR still produces large artifacts near miss-

ing parts, echoing our previous observations in synthetic examples

(Figure 8).

Finally, we compare our method with the data-driven method,

PPSurf [Erler et al. 2024], in Figures 1 and 15. While the learned

priors allow PPSurf to smoothly surface noisy and dense samples, it

tends to over-smooth geometric features (e.g. sealed openings on

Helmet) and struggles with sparse inputs (e.g., Hand and Bathtub).

8.3.4 Quantitative comparisons. We report in Tables 2 and 3 the

errors in the normals and surfaces computed by various methods
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Fig. 12. Comparing the normals and surfaces produced by various methods on curve samples (taken from [Huang et al. 2019]). Points are colored by normal
differences with VIPSS, and surfaces are colored by distances to the VIPSS surface (red for distances greater than 0.15). NN-VIPSS uses 𝜆 = 0 except Walrus
where 𝜆 = 0.0005, and WNNC level is 5. GCNO did not terminate on Torus Wire after running for 30 minutes. All surfaces are produced by NND interpolation
except Walrus, where VIPSS and NN-VIPSS use NND and other methods use SPR [Kazhdan and Hoppe 2013].

for all examples in Figures 11, 12, 13, and 14. The normal errors

are calculated as the mean of (1 − 𝑔𝑖 · 𝑔∗𝑖 )/2, where 𝑔𝑖 , 𝑔
∗
𝑖
are the

computed and ground truth normals at an input point 𝑥𝑖 , over all

points. The surface errors are reported by the Chamfer Distance (CD)

between 100K uniform samples of the computed and ground truth

surfaces. We use VIPSS normals and surfaces as the ground truth

for the curve samples in Figure 12. Normal errors are omitted for

the examples in Figure 14 as no ground truth normals are provided

in the benchmark [Berger et al. 2017]. In all examples, NN-VIPSS

achieves the lowest errors in both normals and surfaces among all

methods other than VIPSS.

We further evaluate our method on the latest surface reconstruc-

tion benchmark [Huang et al. 2024]. This dataset includes curated

models frommultiple sources, including Thingi10k [Zhou and Jacob-

son 2016], 3DNet [Wohlkinger et al. 2012], ABCD [Koch et al. 2019],

and Three D Scans [Laric 2012]. After removing non-manifold and

self-intersecting surfaces, we sample the remaining 1419 models

each by 100K points using Monte Carlo sampling. We compare our

NN-VIPSS with methods scalable to large inputs, including WNNC,

iPSR, IsoConstraint, and Dipole. For a fair comparison, we use SPR

to reconstruct surfaces from the normals computed by all meth-

ods, including our NN-VIPSS. The mean errors over all models, for
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Fig. 13. Comparing the normals and surfaces produced by various methods on points sampled from 3D shapes (Helmet 2 from [Laric 2012] and Mobius from
[Lin et al. 2024]). Points are colored by normal differences with ground truth and surfaces are colored by distances to ground truth (red for distances greater
than 0.02). NN-VIPSS uses 𝜆 = 0. WNNC level is 0 for Brain and Mobius and 1 for Helmet 2. All surfaces are produced by NND interpolation. Genus is noted
(𝑔) for Mobius ground truth and reconstructions.

Table 2. Normal error (NE) and Chamfer Distance (CD) of all methods for examples in Figures 11 and 12. Lowest and second-lowest errors for each example
are respectively in bold-italic and bold.

Method

VIPSS NN-VIPSS WNNC GCNO PGR iPSR IsoConstraint Dipole

NE CD NE CD NE CD NE CD NE CD NE CD NE CD NE CD

Torus 1 0.0002 0.0053 0.0009 0.0062 0.0076 0.0108 0.0057 0.0100 0.0064 0.0105 0.4595 0.1154 0.2699 0.0641 0.2024 0.1312

Torus 2 0.0001 0.0069 0.0003 0.0103 0.0068 0.0225 0.0214 0.0652 0.2164 0.0571 0.0363 0.0690 0.0637 0.0798 0.2222 0.1133

Bathtub 0.0038 0.0132 0.0047 0.0124 0.1615 0.0181 0.4595 0.0318 0.1422 0.0160 0.4771 0.0301 0.1289 0.0146 0.3575 0.0347

Chair 0.0175 0.0043 0.0177 0.0043 0.0298 0.0045 0.0500 0.0048 0.0827 0.0052 0.0689 0.0053 0.0561 0.0047 0.0418 0.0045

Torus Wire 0.0001 0.0107 0.0001 0.0107 0.3647 0.0633 - - 0.0978 0.0124 0.2530 0.0708 0.1594 0.0343 0.4536 0.1594

Doghead 0 0 0.0016 0.0048 0.0226 0.0067 0.0165 0.0081 0.0650 0.0120 0.0175 0.0092 0.0529 0.0118 0.2543 0.0980

Hand 0 0 0.0010 0.0041 0.0194 0.0058 0.0374 0.0066 0.0530 0.0074 0.0399 0.0074 0.0615 0.0097 0.4711 0.0879

Walrus 0 0 0.0078 0.0090 0.0243 0.0096 0.0633 0.0099 0.0808 0.0128 0.0172 0.0098 0.0749 0.0098 0.2992 0.0420

both normals and surfaces, are reported in Table 4. Once again, our

method achieves the lowest errors among all methods.
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Fig. 14. Comparing our method (𝜆 = 0.0002 for Lord and 0.001 for Anchor)
with WNNC (using level 1 and surfaced by SPR) and SPR (using normals
provided in the input) on incomplete and noisy scans from [Berger et al.
2017]. Surfaces are colored by distances to ground truth dense scans (red
for distances greater than 0.04 for Lord and 0.1 for Anchor). Points (left)
are shaded using the provided normals (not used for reconstruction by
NN-VIPSS or WNNC).

Fig. 15. Comparing our method (𝜆 = 0) with PPSurf [Erler et al. 2024] on
sparse samples (blue dots over NN-VIPSS surfaces), Hand (Figure 12) and
Bathtub (Figure 11).

8.4 Performance
The running times of our and other methods on larger examples in

the paper are reported in Table 5. We separately report the optimiza-

tion and interpolation stages of our method, while the latter includes

surfacing using the adaptive method of [Ju et al. 2024]. We only re-

port the timing of other methods for computing the normals. While

not the most efficient, our method achieves comparable speed as

others. Note that our optimization takes significantly longer time for

inputs with noise (e.g., Lord and Anchor), where non-zero lambda

values are used. This is one of the limitations of our method, which

will be discussed further in Section 9.

Table 3. Normal error (NE) and Chamfer Distance (CD) of all methods for
examples in Figures 13 and 14. Lowest errors for each example are in bold.

Method

NN-VIPSS WNNC iPSR IsoConstraint Dipole

NE CD NE CD NE CD NE CD NE CD

Helmet 2 0.0019 0.0056 0.0633 0.0059 0.4259 0.0157 0.0682 0.0062 0.0260 0.0163

Brain 0.0020 0.0058 0.0484 0.0060 0.0334 0.0060 0.2645 0.0108 0.1088 0.0084

Mobius 0.0045 0.0070 0.0491 0.0071 0.2659 0.0088 0.2965 0.0112 0.4527 0.0470

Lord - 0.0043 - 0.0044 - 0.0045 - 0.0045 - 0.0044

Anchor - 0.0075 - 0.0099 - 0.0104 - 0.0104 - 0.0100

Table 4. Mean Normal errors (NE) and Chamfer Distances (CD) on a large-
scale benchmark [Huang et al. 2024]. Lowest errors are in bold.

Method NN-VIPSS WNNC iPSR IsoConstraint Dipole

NE 0.00598 0.00776 0.01122 0.06401 0.04015

CD 0.00221 0.00222 0.00227 0.00254 0.00468

Table 5. Running time (in seconds) of various methods on the larger inputs
shown in this paper, as well as three taken from [Laric 2012] (Bressant
and Dragon use the original samples, and Murex uses a Monte Carlo sam-
pling). Figure numbers are in parentheses. NN-VIPSS time is separated into
optimization (including all solver iterations) and interpolation (including
surfacing). Timings of other methods do not include surfacing.

# points

NN-VIPSS
opt.+interp.

WNNC

gpu (cpu)

iPSR Iso Dipole

Helmet 2 (13) 30,000 7.0+16.2 1.8 (2.7) 124.8 131.2 21.0

Brain (13) 50,000 9.4+14.0 2.9 (5.3) 158.7 131.5 45.7

Lord (14) 57,264 314.4+14.3 2.2 (3.7) 38.8 85.5 52.8

Anchor (14) 85,127 456.7+14.9 3.3 (5.5) 103.5 145.7 118.6

Helmet (1) 100,000 20.8+49.5 4.9 (8.5) 233.4 168.5 138.1

Mobius (13) 100,000 22.7+32.0 6.5 (10.9) 1187.6 213.3 139.4

Bressant 532,913 197.8+160.8 16.9 (38.4) 401.3 244.2 137.9

Murex 1,000,000 199.5+254.3 87.1 (204.2) 594.6 489.3 221.3

Dragon 1,180,060 186.2+292.0 72.9 (143.8) 576.4 479.1 274.6

To validate the theoretical complexity analysis in Section 7, we

will consider two examples that illustrate the best-case and worst-

case scenarios (both using 𝜆 = 0). For the best-case scenario (Figure

16), we sample uniformly on smooth surfaces, including up to 4000

points on Kitten (a) and up to 1M points on Dragon (b,c,d). Observe

in (a) that VIPSS exhibits a fast, polynomial increase in running

time, making it impractical to use beyond a few thousand points. In

contrast, NN-VIPSS takes negligible time for small sample sizes. For

larger inputs, as shown in (b), each step of NN-VIPSS scales near

linearly with the number of samples, matching the analysis in Table

1. The sudden drop of Optimization Solve time after 700K samples

is because the points are dense enough such that the initial Hermite

data is sufficiently close to the minimizer. Our method also exhibits

a similar scaling behavior as other methods, as shown in (c). Finally,

we analyze the natural neighborhood sizes at different sample sizes

in (d). Even though the number of natural neighbors grows linearly

for some points as density increases, as seen from the maximum

curve, the majority of the points have constant, small neighborhood

sizes, as evident in the low average and standard deviation. This

explains the scalability of our method in this scenario.

We demonstrate the worst-case scenario (Figure 17) by uniformly

sampling a curve network (Torus Wire in Figure 12) with increasing

density. Observe in (b) that the natural neighborhood sizes for all

points grow linearly with the sample size. As a result, our method
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Fig. 16. Performance on uniform surface samples. (a): Comparing running
time of VIPSS and NN-VIPSS on samples of the Kitten (Figure 7) up to
4000 points. (b): Timing of each step of NN-VIPSS in Table 1 on samples
of the Dragon [Laric 2012] up to 1M points. (c): Comparing timing of all
methods on the Dragon samples. (d): The mean/max/standard deviation of
the number of natural neighbors per point for each Dragon sample size.

exhibits polynomial growth in time, as shown in (a), and quickly

becomes too time-consuming even at 10K points. Note that such

dense sampling along smooth curves is usually not necessary for

the purpose of surface reconstruction. For example, our method can

reconstruct a plausible surface from complex curve networks like

those in Figure 12 using just a thousand samples.

9 Conclusion and limitations
This paper introduces a new surface reconstruction method for

points without normals. By exploring the locality of natural neigh-

borhoods, we reformulated a global, variational method [Huang

et al. 2019] to significantly improve its scalability while retaining

its robustness on sparse and non-uniform point distributions. Our

method involves a single parameter, needs no discretization (except

for surface extraction), and achieves comparable runtime to state-of-

the-art methods while producing fewer surface artifacts in regions

with insufficient samples.

An important limitation of our method is that its scalability is

tied to the locality of natural neighborhoods, which in turn depends

on the point distribution. While favorable bounds are only known

under strict sampling conditions [Amenta et al. 2007], we found

that the size of natural neighborhoods in practical inputs for sur-

face reconstruction is typically small (Figure 16 (d)). This allows our

methods to handle large inputs. However, our method does not scale

well when the natural neighborhoods are near linear in size for a

significant portion of the input points, for example, when the points

are densely sampled along curves (Figure 17). Another situation

of poor scalability would be a significant amount of outliers, since

Fig. 17. Running time of NN-VIPSS on samples of Torus Wire (Figure 12)
with increasing density (a) and statistics of natural neighborhood sizes (b).
The linear growth in both the mean and standard deviation of the number
of natural neighbors presents the worst-case scenario for our method in
terms of scalability.

points away from the surface often have large natural neighbor-

hoods. A potential remedy for this drawback is to add points into

the input set where Hermite data will be optimized and interpolated.

If located properly, the additional points may reduce the sizes of

natural neighborhoods (in the extreme case, randomly distributed

points have few natural neighbors as well [Dwyer 1989]).

Another limitation of our method is the slower convergence

in optimization for larger 𝜆 and more data noise. As 𝜆 increases,

the minimizing solution becomes smoother (see Figure 9), and the

optimization problem becomes more global. As a result, the initial

Hermite data computed using our local approach over each natural

neighborhood may deviate further from the minimizer. As shown

in Figure 18 (a), increasing 𝜆 requires more iterations to achieve the

desired accuracy, and in turn longer optimization time, and such

increases are more significant as the noise level rises. We take a

closer look at one setting (0.2% noise level and 𝜆 = 0.001) by plotting

the residues at each optimization iteration in (b) and showing four

intermediate reconstructions in (c). While the residue drops quickly

at the beginning of optimization, it plateaus afterwards with only

marginal decreases, while the reconstructions exhibit gradual and

localized changes (see the highlighted regions in (c)). Improving the

convergence of our method on noisy inputs, which require larger 𝜆,

would be another important venue for future research.
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A Proof of Proposition 5.1
Proof. We first verify the interpolation of values 𝑆 and linear

reproduction. The Lagrange property of𝑤𝑖 and the interpolation of

𝑓𝑆𝑖 ,𝐺𝑖
at 𝑥𝑖 implies

˜𝑓𝑆,𝐺 (𝑥𝑖 ) = 𝑓𝑆𝑖 ,𝐺𝑖
(𝑥𝑖 ) = 𝑠𝑖 . Furthermore, if 𝑆 and

𝐺 are derived from some linear function 𝑓 , each 𝑓𝑆𝑖 ,𝐺𝑖
is the same

as 𝑓 due to linear reproduction of Duchon’s interpolant. As𝑤𝑖 form

a partition of unity,
˜𝑓𝑆,𝐺 reproduces the same linear function 𝑓 .

We next prove the smoothness of
˜𝑓𝑆,𝐺 and interpolation of gra-

dients 𝐺 . In one dimension (𝑑 = 1), it is easy to verify that
˜𝑓𝑆,𝐺

is identical to the global Duchon’s interpolant 𝑓𝑆,𝐺 , which is 𝐶1

continuous and interpolates the prescribed gradients. For 𝑑 ≥ 2, we

know that𝑤𝑖 (𝑥) have at least 𝐶1
continuity within the convex hull

of 𝑌 except at 𝑋 . Since Duchon’s interpolants are 𝐶1
, this implies

that
˜𝑓𝑆,𝐺 is𝐶1

away from 𝑋 . It remains to show that the gradient of

˜𝑓𝑆,𝐺 exists at each point 𝑥𝑖 ∈ 𝑋 and equals 𝑔𝑖 .
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For notational simplicity, we replace 𝑓𝑆,𝐺 by 𝑓 , ˜𝑓𝑆,𝐺 by
˜𝑓 , and

𝑓𝑆𝑖 ,𝐺𝑖
by 𝑓𝑖 . Let 𝐼 (𝑥) be the indices of those 𝑥𝑖 that are the natural

neighbors of 𝑥 in {𝑥} ∪ 𝑋 ∪ 𝑌 . Using the product rule,

𝐷 ˜𝑓 (𝑥) =
∑︁

𝑗∈𝐼 (𝑥 )
𝐷𝑤 𝑗 (𝑥) 𝑓𝑗 (𝑥) +

∑︁
𝑗∈𝐼 (𝑥 )

𝐷𝑓𝑗 (𝑥)𝑤 𝑗 (𝑥) .

Due to the Lagrange property of 𝑤 𝑗 , and since 𝑓𝑗 (𝑥𝑖 ) = 𝑠𝑖 and

𝐷𝑓𝑗 (𝑥𝑖 ) = 𝑔𝑖 for every 𝑗 ∈ 𝐼 (𝑥𝑖 ),

𝐷 ˜𝑓 (𝑥𝑖 ) = 𝑠𝑖

∑︁
𝑗∈𝐼 (𝑥𝑖 )

𝐷𝑤 𝑗 (𝑥𝑖 ) + 𝐷𝑓𝑖 (𝑥𝑖 )

= 𝑠𝑖𝐷
©«

∑︁
𝑗∈𝐼 (𝑥𝑖 )

𝑤 𝑗 (𝑥𝑖 )ª®¬ + 𝑔𝑖
for 𝑖 = 1, . . . , 𝑛. Due to partition of unity,

∑
𝑗∈𝐼 (𝑥 ) 𝑤 𝑗 (𝑥) is constant

(0) for any 𝑥 in the convex hull of 𝑌 , and hence its derivative exists

and is zero everywhere (including 𝑥 = 𝑥𝑖 ). Therefore the first term

on the rhs vanishes and we conclude 𝐷 ˜𝑓 (𝑥𝑖 ) = 𝑔𝑖 . □

B Proof of Proposition 6.1
Proof. We draw upon a result from [Huang et al. 2019] (Propo-

sition 4.1) about the matrix 𝐽𝑖 in Equation 10 for subset 𝑋𝑖 of 𝑋 . A

square matrix of length (𝑑 +1) |𝑋𝑖 |, 𝐽𝑖 can be written in a block form,

𝐽𝑖 =

(
𝐽𝑖,00 𝐽𝑖,01

𝐽𝑇
𝑖,01

𝐽𝑖,11

)
,

where 𝐽𝑖,00 is a square matrix with length |𝑋𝑖 |. Then matrix 𝐽𝑖 for

the corresponding subset 𝑋𝑖 of 𝑋 has the form:

𝐽𝑖 =

(
𝜎−3 𝐽𝑖,00 𝜎−2 𝐽𝑖,01
𝜎−2 𝐽𝑇

𝑖,01
𝜎−1 𝐽𝑖,11

)
.

Building on this result, and let 𝑆 = 𝜎𝑆,𝐺 = 𝐺 , and ˆ𝜆 = 𝜎3𝜆, we can

relate the objective of Equation 10 w.r.t {𝑋, ˆ𝜆} and {𝑋, 𝜆} as:

𝑆𝑇 𝑆 + ˆ𝜆
∑︁
𝑖

(
𝑆𝑇
𝑖

𝐺𝑇
𝑖

)
𝐽𝑖

(
𝑆𝑖

𝐺𝑖

)
= 𝜎2 (𝑆𝑇 𝑆 + 𝜆

∑︁
𝑖

(
𝑆𝑇
𝑖

𝐺𝑇
𝑖

)
𝐽𝑖

(
𝑆𝑖
𝐺𝑖𝑠

)
)

As a result, if {𝑆∗,𝐺∗} minimizes the objective w.r.t. {𝑋, 𝜆}, then
{𝑆∗ = 𝜎𝑆∗,𝐺∗ = 𝐺∗} minimizes the objective w.r.t. {𝑋, ˆ𝜆}. To prove

the second half of the proposition, [Huang et al. 2019] (Proposition

4.1) shows that 𝑓
𝑆,�̂�

(𝑥) = 𝜎 𝑓𝑆,𝐺 (𝑥/𝜎) for any 𝑥 ∈ R𝑑 . On the

other hand, the blending weights𝑤𝑖 , like NNC, are invariant under

uniform scaling. We therefore derive:

˜𝑓
𝑆∗,�̂�∗ (𝑥) =

∑︁
𝑖

𝑤𝑖 (𝑥) 𝑓𝑆∗
𝑖
,�̂�∗

𝑖
(𝑥)

= 𝜎
∑︁
𝑖

𝑤𝑖 (𝑥) 𝑓𝑆∗
𝑖
,𝐺∗

𝑖
(𝑥/𝜎)

= 𝜎 ˜𝑓𝑆∗,𝐺∗ (𝑥/𝜎)
□

C Initialization
To initialize the NN-VIPSS optimization (Equation 10), we first com-

pute Hermite data at each point 𝑥𝑖 ∈ 𝑋 by solving a simplified

variational problem, similar to VIPSS, over the subset 𝑋𝑖 . Instead

of constraining all vectors 𝑔 𝑗 for 𝑥 𝑗 ∈ 𝑋𝑖 to be unit vectors, we

only constrain one vector, 𝑔𝑖 , to be a unit vector. As we shall see,

the simplification reduces the variational problem to computing the

eigenvector of a small 𝑑 × 𝑑 matrix.

For generality and ease of notation, we will formulate the problem

as follows: given a point set 𝑋 = {𝑥1, . . . , 𝑥𝑛} in R𝑑 , we seek a

smooth implicit function whose zero level set approximates 𝑋 and

whose gradient at 𝑥1 has unit length. We can represent the function

as an interpolant 𝑓𝑆,𝑔 of scalars 𝑆 = {𝑠1, . . . , 𝑠𝑛}, one at each point,

and a single vector𝑔 at 𝑥1. The problem can be formulated as finding

{𝑆, 𝑔} that
Minimizes: 𝑆𝑇 𝑆 + 𝜆 𝐸 (𝑓𝑆,𝑔)
Subject to: 𝑔𝑇𝑔 = 1.

(13)

Similar to Duchon’s interpolant, a smooth interpolant 𝑓𝑆,𝑔 can be

defined using an extended form of HRBF (see [Wendland 2004],

Chapter 16.2) as

𝑓𝑆,𝑔 (x) =
𝑛∑︁
𝑖=1

𝑎𝑖𝜙 (𝑥, 𝑥𝑖 ) + 𝑏𝑇𝐷0,1𝜙 (𝑥, 𝑥1) + 𝑝𝑇𝑋 + 𝑞

where 𝜙 is the triharmonic kernel. The coefficients 𝑎𝑖 ∈ R, 𝑏 ∈
R𝑑 , 𝑝 ∈ R𝑑 , 𝑞 ∈ R can be uniquely determined by a similar lin-

ear system that enforces interpolation (𝑓𝑆,𝑔 (𝑥𝑖 ) = 𝑠𝑖 for all 𝑖 and

𝐷𝑓𝑆,𝑔 (𝑥1) = 𝑔) and additional constraints (

∑
𝑖 𝑎𝑖 = 0 and

∑
𝑖 𝑎𝑖𝑥𝑖 +

𝑏 = 0):

𝑀

©«
𝐴

𝑏

𝑝

𝑞

ª®®®¬ =
©«
𝑆

𝑔

0

0

ª®®®¬ ,
where the interpolation matrix𝑀 has length 𝑛 + 2𝑑 + 1. Duchon’s

energy of 𝑓𝑆,𝑔 bears a similar form as that of Duchon’s interpolant

(Equation 6):

𝐸 (𝑓𝑆,𝑔) =
(
𝑆𝑇 𝑔𝑇

)
𝐽

(
𝑆

𝑔

)
, (14)

where 𝐽 is the top-left block of length 𝑛 + 𝑑 in𝑀−1
. We will write 𝐽

in a block form as

𝐽 =

(
𝐽00 𝐽01

𝐽𝑇
01

𝐽11

)
,

where 𝐽00 is a square matrix with length 𝑛. Substituting the energy

definition in Equation 14 into the objective of Equation 13 yields

the quadratic objective:

𝑆𝑇 𝑆 + 𝜆

(
𝑆𝑇 𝑔𝑇

)
𝐽

(
𝑆

𝑔

)
.

For a given 𝑔, this objective is a quadratic function of 𝑆 , whose

minimum is achieved at

𝑆 = −𝜆(𝐼𝑛 + 𝜆𝐽00)−1 𝐽01 𝑔, (15)

where 𝐼𝑛 is the identity matrix of length 𝑛, and the minimum objec-

tive has the form 𝑔𝑇𝐻𝑔, where 𝐻 is a 𝑑 × 𝑑 matrix of the form:

𝐻 = 𝐽11 − 𝜆𝐽𝑇
01
(𝐼𝑛 + 𝜆𝐽00)−1 𝐽01 .

Therefore, solving the problem of Equation 13 amounts to minimiz-

ing𝑔𝑇𝐻𝑔 subject to𝑔𝑇𝑔 = 1. By the Rayleigh Quotient Theorem, the

minimizer 𝑔∗ is the eigenvector of 𝐻 with the smallest eigenvalue.

The scalars 𝑆∗ minimizing Equation 13 can then be obtained from

𝑔∗ via Equation 15.
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